

Millimetron Spacecraft Structure and Technical Requirements

Andrey Smirnov on behalf of the Millimetron team

Smirnov Andrey, Millimetron Workshop, 9-11 Sept 2019, Paris

Outline

- 1. Structure of the spacecraft
- ✓ Launcher Vechicle
- ✓ Transport and working configuration
- ✓ Mass and power budget
- 2. Key systems of the payload module
- ✓ Antenna
- ✓ Thermal system
- ✓ Scientific Instruments
- ✓ Cryo instrument container
- ✓ High-speed data link
- ✓ Spacecraft Bus "Navigator-SM"

In Russia, there is a program for the development heavy lift class launchers

Launch Vehicle	Booster	Launch mass to L2, kg	Diameter of the fairing, m	Year of flight
«Angara-A5»	DM-03	7,2	4.35	2023
«Angara- A5M»	DM-03	8,1	5.2	2024
«Angara- A5M»	KVTK	9,35	5.2	2026

* present launchers will start from Vostochny Cosmodrome (Russia)

DM – more than 320 launches (98% success rate)

e) TRL9

KVTK- Liquide Oxygen/Hydrogen upper stage booster

Launch Configuration in the Fairing

General view of LV «Angara-A5» with **KVTK upper stage**

5

Working Configuration

ASC LPI

Spacecraft Bus

Preliminary Mass and Power Budget

Launch Vehicle	Mass, kg	Power, W
Payload module	6500	4500
Space Bus	1770	2500
Launch vehicle adapter	115	-
Fuel	900	-
Total Spacecraft (included margin 10%)	9285	7000

* We are continue work to reduce mass and power consumption of the systems

- The antenna of the MSO has a Cassegrain design composed of a fast and large (10-m) parabolic primary mirror and a hyperbolic secondary mirror
- Unfolded 3m aperture central part of the PM
- The requirement for the WFE of the whole antenna is 6μm RMS (goal)
- The operating wavelength of antenna is aimed from 80 μm to 7 mm
- A surfaces reflectivity of the mirrors has to be kept above 0.98 for the whole lifetime of the mission – 10 years
- An equivalent focal length is about 70m, FOV about 7 arcmin
- Operational temperature of < 10K (4K goal)
 Industrial partner responsible for antenes:
 Reshetnev
 More details in the presentation of Y. Podobedov

Thermal system

<u>Requirements</u>: 10-m space telescope cooled down to 4K & on-board cooled instruments

Critical milestones to achieve the requirements:

- ✓ the telescope will have location with best environment for radiation cooling
- maximum effectively use radiation cooling
- avoid place warm elements in cold parts
- minimize heat flows from warm to cold parts
- stage temperature level cooling structure
- design should be based on use of a space mechanical cryocoolers

Thermal system

Best Environment for Radiation Cooling

Illustrative picture of Halo orbit around the Sun-Earth L2 point

Visibility of the Sky During 1 Year

Visibility of the Sky at the Moment

ASC LPI

- 1) Space-VLBI receivers (S-VLBI)
- 2) Millimetron Heterodyne Instrument for Far-Infrared (MHIFI)
- 3) Short-wave Array Camera Spectrometer (SACS)
- 4) Long wave-Array Camera Spectropolarimeter (LACS)

More details in the presentation of A. Baryshev

Cryo Instrument Container

15

Instruments Focal Plane Allocation Layout

High-speed data link

Launch configuration

Smirnov Andrey, Millimetron Workshop, 9-11 Sept 2019, Paris

Spacecraft Bus - "Navigator-SM"

The "Navigator-SM" for Millimetron will be based on the "Navigator" module

Main changes:

- propulsion system will be changed onto double fuel component liquid propulsion system of capillary type
- SC power supply system will be changed onto energetic module, located at separate thermal panel

- Currently Millimetron not only a concept it's real project in under development
- ✓ Many parts of Millimetron use technology with a high TRL
- Mission requirements and launch date make the project very promising for many scientific and technological aspects
- Up to date we are still open to a new participants and collaborators

Thank you for your attention